PLIKASI ARITMETIK
APLIKASI ARITMETIK
"Garasi Mobil Otomatis"
1.Tujuan[kembali]
- mengetahui bentuk rangkaian aplikasi aritmetik
- Memahami prinsip kerja dari aplikasi aritmetik
2. Alat dan Bahan[kembali]
2. Dioda
8. Gerbang Logika AND (IC 7411)
Konfiugurasi pin:
- Vcc : Kaki 14
- GND : Kaki 7
- Input : Kaki 1, 2, 3, 4, 5, 9,10,11 dan 13
- Output : Kaki 6, 8, dan 12
Data Sheet IC 7411:
A. Spesifikasi
- Wide supply voltage range: 3.0V to 15V
- Low power: 100 nW (typ.)
- Medium speed operation: tPHL = tPLH = 40 ns (typ.) at CL = 15 pF, 10V supply
- High noise immunity 0.45 VCC (typ.)
B. Konfigurasi PIN
Pin No | Pin Name | Description |
---|---|---|
1 | A0 | Input 1 of XOR gate 0 |
2 | B0 | Input 2 of XOR gate 0 |
3 | Q0 | The output of XOR gate 0 |
4 | Q1 | The output of XOR gate 1 |
5 | A1 | Input 1 of XOR gate 1 |
6 | B1 | Input 2 of XOR gate 1 |
7 | VSS | Source Supply |
8 | A2 | Input 1 of XOR gate 2 |
9 | B2 | Input 2 of XOR gate 2 |
10 | Q2 | The output of XOR gate 2 |
11 | Q3 | The output of or gate 3 |
12 | A3 | Input 1 of OR gate 3 |
13 | B3 | Input 2 of OR gate 3 |
14 | VDD | Drain Supply |
10. Logic State
Pinout
Konfigurasi pin sensor
Spesifikasi :
3. Dasar Teori[kembali]
Gerbang AND atau disebut juga "AND GATE" adalah jenis gerbang logika yang memiliki dua input (Masukan) dan satu output (keluaran). Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang AND berikut
Pada gerbang logika AND, simbol yang menandakan operasi gerbang logika AND adalah tanda titik (.) atau bisa juga dengan tanpa tanda titik, contohnya seperti Z = X.Y atau Z = XY.
Perhatikan tabel kebenaran gerbang AND. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang AND akan menghasilkan output (keluaran) logika 1 bila semua variabel input (masukan) bernilai logika 1" sebalikanya "Gerbang AND akan menghasilkan keluaran logika 0 bila salah satu masukannya merupakan logika 0"
Jenis Gerbang Logika AND
Adapun gerbang logika AND terdiri dari gerbang logika AND 2 input dan 3 input. Untuk memperjelas silahkan perhatikan gambar berikut.
Berdasarkan ekspresi Boolean untuk fungsi logika AND didefinisikan sebagai (.) yang mana merupakan operasi bilangan biner, sehingga gerbang AND dapat diturunkan secara bersama-sama untuk membentuk sejumlah input.
Tetapi mengingat bahwa IC gerbang AND yang tersedia dipasaran hanya terdiri dari input 2, 3, atau 4. maka diperlukan input tambahan , sehingga gerbang AND standar perlu diturunkan bersama sehingga mendapatkan nilai input yang diperlukan, sebagai contoh
Gerbang AND Multi Input
Berdasarkan Gerbang AND 6 input diatas maka ekspresi Boolean yaitu :
Q = (A.B).(C.D).(E.F)
Tabel kebenaran untuk logika Ex-OR adalah
Sensor GP2D12 adalah sensor jarak analog yang menggunakan infrared untuk mendeteksi jarak antara 10 cm sampai 80 cm. GP2D12 mengeluarkan output voltase non linear dalam hubungannya dalam jarak objek dari sensor dan menggunakan interface analog to digital converter (ADC). Merujuk pada datasheet GP2D120, disebutkan persamaan interpolasi V = 1 / ( R + 0.42 ), dimana V adalah tegangan output sensor dan R adalah jarak hasil pengukuran.
Spesifikasi Teknis:
a. Range 10 – 80 cm
b. Update frequency/ period 25 Hz / 40ms
c. power supply voltage 4.5 – 5.5 V
d. Noise on analog output < 200mV
e. Mean consumtion 35 mA
Kelemahan:
a. Respon 40ms
b. Error bila jarak <10cm dan pada cermin
c. Hanya dapat mengukur <80 cm
Kelebiahan:
a. Dapat mengukur jarak pada bidang miring
b. Sudut pengukuran sempit
c. Sangat direktif
Berikut Grafik respon anatara jarak dan deteksi objek terhadap output analog sensor
NTE7482 adalah penambah penuh biner 2-bit dalam paket tipe DIP 14-Lead yang melakukan penambahan dari dua bilangan biner 2 bit. Jumlah () output disediakan untuk setiap bit dan resultan carry (C2) diperoleh dari bit kedua. Dirancang untuk kecepatan sedang hingga tinggi, banyak bit, paralel tambahkan/serial−bawa aplikasi, sirkuit ini menggunakan logika transistor−transistor fan−out berkecepatan tinggi (TTL) dan kompatibel dengan keluarga logika DTL dan TTL. Implementasi inversi tunggal, sirkuit pembawa serial terhubung Darlington berkecepatan tinggi dalam setiap bit meminimalkan kebutuhan untuk sirkuit kaskade "melihat ke depan" dan membawa yang ekstensif.
11. Motor DC
Prinsip Kerja Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
12. Buzzer
Spesifikasi buzzer : 12 V
Buzzer adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara. Buzzer ini biasa dipakai pada sistem alarm. Juga bisa digunakan sebagai indikasi suara. Buzzer adalah komponen elektronika yang tergolong tranduser. Sederhananya buzzer mempunyai 2 buah kaki yaitu positive dan negative. Untuk menggunakannya secara sederhana kita bisa memberi tegangan positive dan negative 3 - 12V.
Cara Kerja Buzzer pada saat aliran listrik atau tegangan listrik yang mengalir ke rangkaian yang menggunakan piezoeletric tersebut. Piezo buzzer dapat bekerja dengan baik dalam menghasilkan frekwensi di kisaran 1 - 6 kHz hingga 100 kHz.
Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.
Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.
Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.
Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Pemberian bias Ada beberapa macam rangkaian pemberian bias, yaitu: 1. Fixed bias yaitu, arus bias IB didapat dari VCC yang dihubungkan ke kaki B melewati tahanan R seperti gambar 58. Karakteristik Output.2.Self Bias adalah arus input didapatkan dari pemberian tegangan input VBB seperti gambar 60.
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
14. Logic state
Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya. Input dan Output pada Gerbang Logika hanya memiliki 2 level. Kedua Level tersebut pada umumnya dapat dilambangkan dengan :
- HIGH (tinggi) dan LOW (rendah)
- TRUE (benar) dan FALSE (salah)
- ON (Hidup) dan OFF (Mati)
- 1 dan 0
7 jenis gerbang logika :
- Gerbang AND : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 0, maka output akan menjadi 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 1.
- Gerbang OR : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 1, maka output akan menjadi 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 0.
- Gerbang NOT : Fungsi Gerbang NOT adalah sebagai Inverter (pembalik). Nilai output akan berlawanan dengan inputnya.
- Gerbang NAND : Apabila semua / salah satu input bilangan biner (berlogika) 0, maka outputnya akan berlogika 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 0.
- Gerbang NOR : Apabila semua / salah satu input bilangan biner (berlogika) 1, maka outputnya akan berlogika 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 1.
- Gerbang XOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 1. Sedangakan jika input adalah sama, maka output akan berlogika 0.
- Gerbang XNOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 0. Sedangakan jika input adalah sama, maka output akan berlogika 1.
14. Logic state
Input dan Output pada Gerbang Logika hanya memiliki 2 level. Kedua Level tersebut pada umumnya dapat dilambangkan dengan :
- HIGH (tinggi) dan LOW (rendah)
- TRUE (benar) dan FALSE (salah)
- ON (Hidup) dan OFF (Mati)
- 1 dan 0
7 jenis gerbang logika :
- Gerbang AND : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 0, maka output akan menjadi 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 1.
- Gerbang OR : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 1, maka output akan menjadi 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 0.
- Gerbang NOT : Fungsi Gerbang NOT adalah sebagai Inverter (pembalik). Nilai output akan berlawanan dengan inputnya.
- Gerbang NAND : Apabila semua / salah satu input bilangan biner (berlogika) 0, maka outputnya akan berlogika 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 0.
- Gerbang NOR : Apabila semua / salah satu input bilangan biner (berlogika) 1, maka outputnya akan berlogika 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 1.
- Gerbang XOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 1. Sedangakan jika input adalah sama, maka output akan berlogika 0.
- Gerbang XNOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 0. Sedangakan jika input adalah sama, maka output akan berlogika 1.
Tidak ada komentar:
Posting Komentar